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Abstract
We discuss the expected features in nuclear relaxation and Knight shift measurements for the
Kondo scenario for the ‘0.7 feature’ of semiconductor quantum point contact (QPC) devices
defined in two-dimensional electron gases (2DEGs). As the conductance is more sensitive to the
nuclear polarization in the centre of the QPC than that in the 2DEG leads, our analysis is
focused on the region near to the centre of the QPC. We show that the exchange coupling of a
bound electron in the QPC with the nuclei would lead, in the region near to the centre of the
QPC, to a much higher rate of nuclear relaxation compared to that involving exchange of
nuclear spin with conduction electrons. Away from the centre of the QPC, we find that the
distance beyond which the latter (conduction electron) mechanism becomes equally important
is of the order of typical QPC lengths; thus, between these two electronic mechanisms,
relaxation by coupling to the bound electron dominates within the QPC. Furthermore, we show
that the temperature dependence of the nuclear relaxation due to coupling to the bound electron
is non-monotonic in contrast to the linear-in-T relaxation from coupling with conduction
electrons. Nuclear spin diffusion processes restrict the range of validity of this analysis. We
present a qualitative analysis of additional relaxation due to nuclear spin diffusion (NSD), and
compare the nuclear relaxation times associated with NSD and the above electronic
mechanisms. We discuss circumstances in which NSD will affect our results significantly, and
suggest ways in which NSD may be suppressed in the QPC so that the Kondo physics may be
unearthed. Nuclear relaxation together with Knight shift measurements will help in verifying
whether the ‘0.7’ feature is indeed due to the presence of a bound electron in the QPC. While
some of the results have also been discussed in the context of paramagnetic impurities in bulk
conductors, our analysis is intended for application to the 0.7 effect in semiconductor systems.
The qualitative and quantitative estimates that we make will allow experimental tests of the
Kondo scenario for the 0.7 feature of QPCs in two-dimensional electron gas heterostructures.

1. Introduction

1.1. The 0.7 conductance anomaly

The ballistic conductance G of a quantum point contact (QPC)
device, measured as a function of the width of the channel
transverse to the current, is quantized in integer multiples
of G0 = 2e2/h in the absence of a magnetic field and

electron interactions. The application of a strong in-plane
magnetic field lifts the electron spin degeneracy through
Zeeman splitting without affecting the electron trajectories in
the plane of the device, and the quantization then appears
in multiples of G0/2. These effects had been observed
since 1988 [1, 2], and well-understood as arising from the
quantization of the electron momentum in the QPC in the
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direction transverse to the current (transverse sub-bands) [2, 3].
A remarkable set of measurements [4–6], beginning in 1996,
on the ubiquitous but hitherto overlooked additional ‘0.7
features’ between successive quantized plateaus of the ballistic
conductance has, since then, lead us to critically question
our understanding of electron transport in the humble QPC
and directly inspired a great deal of experimental [7–15] and
theoretical [16–29] work.

Some of the salient features of this ‘0.7 effect,’ as it is
usually referred to are as follows. The ballistic conductance, as
a function of the gate voltage (that controls the cross-sectional
width of the QPC), shows shoulder-like structures at the
‘steps’ marking the transitions between successive quantized
conductance plateaus, Gn = nG0. The shoulders usually occur
at values of around 0.7Gn between neighbouring quantized
plateaus Gn and Gn+1 [4, 5], although their positions are not
universal and have been known to occur as low as 0.5G0 [6, 8].
The shoulders are not due to disorder effects nor they are
transmission resonances [5]. The most prominent shoulder
occurs where the QPC makes a transition from a pinch-off
state (n = 0) to the first quantized plateau. The temperature
dependence of this feature is very unusual [4, 5, 7, 8, 10].
Decreasing the temperature makes it less well-defined, and it
altogether disappears at low temperatures of the order of a
few tens of millikelvins. Increasing the temperature makes
the feature more well-defined, until, beyond a few kelvins, the
feature as well as the quantized plateaus begin to get thermally
smeared out. The temperature dependence has been fitted with
an Arrhenius law [7] as well as a power law [10], and the
conductance change over the temperature range in which the
feature exists is insufficient to resolve this ambiguity. The
characteristic temperature scale associated with the feature is
of the order of a kelvin. Upon the application of an in-
plane magnetic field that removes electron spin degeneracy
through Zeeman splitting without affecting their trajectories
in the plane of the device, the 0.7 shoulder shifts lower in
a smooth manner, finally moving to 0.5G0 at fields of the
order of a few tesla (corresponding to complete lifting of
electron spin degeneracy). This is evidence that the feature
is intimately connected with electron spin. The 0.7 feature
is believed to arise due to electron interaction [4, 5, 7, 8, 10]
as can be seen from the following two characteristic features.
The gyromagnetic ratio ge of the electrons is larger in the
lowest sub-bands by a factor of about two compared with
the bulk GaAs value of ge = −0.44, and decreases towards
−0.44 in the higher sub-bands [4, 5]. Enhancement of the
gyromagnetic ratio may be associated with electron interaction.
Since in the lower sub-bands, the number of electrons in
the QPC is smaller and electrostatic screening is weaker,
electron interaction effects such as exchange are expected to be
stronger there. In presence of a non-zero source–drain potential
difference Vsd, dG/dVsd shows a zero-bias anomaly (peak) at
Vsd = 0, which is not generally expected for noninteracting
electrons [10].

Numerous scenarios have been studied for the 0.7
feature ranging from electron spin polarization in the
QPC [4, 7–9, 16–21], exchange splitting of few electron bound
states in the QPC [22], Kondo effect arising from quasi-bound

electrons in the QPC [10, 23, 24], ferromagnetic Luttinger
liquids [25], charge [26] and spin density waves [27], and
Wigner crystallization effects in one dimension [20, 28]. Of
these, the electron spin polarization and Kondo scenarios have
been most extensively studied, while the Wigner crystallization
scenario is a more recent proposal that also looks promising.

Choosing theoretically between the electron spin polar-
ization and Kondo pictures has proved difficult because both
have been able to substantially describe the experimental ob-
servations. Recent measurements of the 0.7 feature in hole-
doped GaAs in [9] used two QPCs in a hole-focusing setup
that claimed to confirm the spin polarization picture and rule
out the Kondo picture as incompatible with their data. On the
other hand, features such as the zero-bias anomaly observed in
measurements at non-zero Vsd [10] have not been explained
using the spin polarization picture, although there has been
a suggestion that the zero-bias anomaly can also arise from
backscattering by acoustic phonons [29].

1.2. NMR for the 0.7 feature

In this paper we discuss the signatures in nuclear relaxation of
the presence of a bound electron in a short QPC. We present a
fairly detailed review on nuclear relaxation in the presence of a
bound electron in the QPC. The purpose is twofold. First, these
NMR methods are not yet being used in the 0.7 community and
an analysis of nuclear relaxation in this context may be useful.
Second, we have recently studied [30] nuclear relaxation in
QPCs for the Kondo scenario as well as for the other proposed
physical mechanisms for the 0.7 feature. Here we present
details of the calculations for the ‘Kondo’ part in [30], and
also discuss in addition, the effects of nuclear spin diffusion
processes on the relevance of the analysis.

Nuclear relaxation measurements in nanoscale systems
such as QPCs have been hampered, in comparison with bulk
systems, by the small number of polarized nuclei. Recently,
however, it has been shown how nuclear polarization may be
created [30, 31] and detected [30, 32] in QPCs through the
measurement of the two-terminal conductance. In this paper,
we devote our attention to the region near the centre of the QPC
as the conductance is more sensitive to nuclear polarization in
this region than it is to nuclear polarization away from the QPC
in the 2DEG leads.

We compare the nuclear relaxation rates from the coupling
of the nuclei with (a) the bound electron and (b) the conduction
electrons both above and below the Kondo temperature TK.
We show that near to the centre of the QPC, the relaxation
through coupling with the bound electron will be in general
much faster, and furthermore, follow a (very different) non-
monotonous temperature dependence. In the high temperature
regime (T > TK) the relaxation rates, respectively, due to
impurity coupling, T imp

1 , and conduction electrons, T cond−el
1 ,

are given by (see equations (26) and (29))

1

T imp
1

= 2Ad(Ri)
2S(S + 1)

3π h̄(kBT )(Jρ(εF))2
, (1)

1

T cond−el
1

= π(kBT )

h̄
(Asρ(εF))

2 (high temp.). (2)

2
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Here Ad(Ri) is the hyperfine interaction of the nucleus at
point Ri with the impurity spin S = 1/2 at the origin, As is
the hyperfine interaction of the nucleus with the conduction
electrons and J is the interaction of the impurity spin and
conduction electrons. ρ(εF) is the density of states at the Fermi
energy. In the low temperature regime (T < TK), the relaxation
rates in the two cases are (see equations (31) and (35))

1

T imp
1

= 4π(kBT )Ad(Ri)
2

h̄(gsμB)4
χ2

imp, (3)

1

T cond−el
1

= π(kBT )

h̄
(Asρ(εF))

2

(
1 + 2C

N

TF

TK

)

(low temp.). (4)

Here χimp is the susceptibility of the impurity spin, C is a
constant of the order one, TF is the Fermi temperature and
N is the number of electrons in the QPC. The conduction
electron results at low temperatures and high temperatures
differ only through the enhancement of the density of states
of the conduction electrons that occurs below the Kondo
temperature. For details of these results we refer the reader
to sections 3 and 4. Associating the (experimentally observed)
characteristic temperature scale ∼1 K associated with the 0.7
feature with TK, we have the following estimates. For T =
2 K (high temperature regime), the nuclear relaxation times
associated with processes (a) and (b) near the centre of the QPC
are respectively T imp

1 ≈ 0.1 s and T cond−el
1 ≈ 5 s. For T =

0.5 K (low temperature regime), we find T imp
1 ≈ 3.5 × 10−2 s

and T cond−el
1 ≈ 20 s. Away from the centre of the QPC, the

nuclear relaxation rate due to impurity coupling decreases as
the exchange (RKKY) interaction of the bound electron and
a nuclear spin at a distance Ri from the electron falls off
as 1/(kF Ri). We show in section 6 that below the Kondo
temperature, relaxation by coupling to conduction electrons
dominates at distances beyond Ri = (4εF/kBTKkF), where
εF is the Fermi energy of the electrons in the QPC. For a
2D electron density of 1011 cm−2, 1D Fermi energy of 20 K,
and a Kondo temperature of 1 K, we estimate this distance
Ri to be about 1.6 μm, which is of the order of the length
of typical QPCs. Since nuclear relaxation in the QPC affects
the conductance far more than that in the 2DEG leads, we
thus conclude that between these two electronic mechanisms,
the conductance is determined more by the nuclear relaxation
from coupling to the impurity electron than by coupling to the
conduction electrons.

The final test for a bound electron, which we propose
here, comes from Knight shift measurements. The temperature
dependence of the Knight shift is shown to be the same as
the temperature dependence of the susceptibility of a Kondo
impurity. The Knight shift may be measured by observing
the conductance as a function of the frequency of an external
electromagnetic wave to which the QPC is subjected. When
the frequency matches the difference in energy of successive
nuclear Zeeman levels, the nuclear polarization will get
destroyed resulting in a sudden change in conductance.

Internuclear dipolar interactions give rise to nonconserv-
ing spin flips and internuclear flip-flops, and limit the range

of validity of our analysis. In GaAs, these interactions corre-
spond to a field of the order of a millitesla which is equiva-
lent to T1 ∼ T2 ∼ 10−4 s in the absence of a magnetic field.
However in a non-zero magnetic field of several millitesla, this
intrinsic T1 may be many orders of magnitude larger (see sec-
tion 7); therefore the measurements we propose should be per-
formed in the presence of small but non-zero magnetic fields.
Apart from nonconserving spin flips, internuclear spin flip-flop
processes can be significant even in the presence of a mag-
netic field, and cause nuclear spin diffusion (NSD). Our most
conservative estimate (see section 7) for the nuclear spin diffu-
sion time for the QPC is T sd

1 ∼ 0.4 s which is based on using
the bulk value for the nuclear spin diffusion constant in GaAs.
However, as we discuss later, the nuclear spin diffusion con-
stant for a QPC with a localized electron can be much smaller
than the bulk value because the resulting non-uniformity of the
hyperfine interaction suppresses internuclear flip-flops. We re-
view recent literature on NSD in quantum dots where it has
been shown that NSD can be further suppressed by one to two
orders of magnitude by applying fields greater than 1 mT, and
also by suitable redesigning of the heterostructure as for exam-
ple by growing AlGaAs layers on either side of the GaAs layer.
We believe that the fairly long relaxation times associated with
NSD in QPCs (or quantum dots) together with the possibility
of further strong suppression of NSD through small magnetic
fields and/or device redesigning makes it quite feasible to ob-
serve nuclear relaxation effects due to the bound electron in the
QPC.

The nuclear relaxation and Knight shift measurements
together enable a confirmation of the presence of a bound
electron in the QPC, if any.

The rest of the paper is organized as follows. We introduce
our model in section 2 for a QPC with a bound electron and
provide general expressions of the experimentally measured
nuclear relaxation rates T −1

1 and T −1
2 . In sections 3 and 4,

respectively, we analyse the nuclear relaxation at temperatures
above and below the Kondo temperature. The crossover
between the high and low temperature regimes is discussed in
section 5, and section 6 contains a discussion of the relative
strengths of nuclear relaxation by coupling to conduction
electrons and by coupling to the bound electron spin. Finally
in section 7, we discuss nuclear spin diffusion (NSD) effects,
how it affects our earlier analysis, and ways in which NSD can
be suppressed so that the Kondo scenario for the 0.7 feature
may be feasibly tested with the proposed NMR method.

2. Model

We consider a simple model of a QPC defined in a two-
dimensional electron gas (2DEG) in the xz plane, taking the
transport direction along the x axis. Let wx , wz be the
dimensions of the QPC in the xz plane, and wy in the direction
perpendicular to the 2DEG. We assume the bound electron
(impurity) of spin S is localized at the origin r = 0 which
we take as the centre of the QPC. Let Ii be the nuclear spins
of the host GaAs, and the conduction electron spin density be

3
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denoted by σ (r). The Hamiltonian is

H =
∑
kσ

εkc†
kσ ckσ − H0 ·

(
gsμBS + gnμn

∑
i

Ii

+ gσμB

∑
i

σ (ri )

)
+ JS ·σ (0) + As

∑
i

Ii ·σ (Ri )

+ Ad I0 · S. (5)

H0 is the external magnetic field. We assume that the electronic
Zeeman energy gσμB

∑
i H0 · σ (ri ) is much less than the

Kondo temperature associated with the (antiferromagnetic)
impurity–conduction electron coupling J, (J > 0), such that
the Kondo is not suppressed by Zeeman splitting. As is the
hyperfine coupling strength between the nuclei and conduction
electrons. It is of the order of 100 μeV per nucleus in GaAs.
The hyperfine contact term Ad coupling the impurity electron
to the nuclear spins is proportional to the probability density of
the localized electron wavefunction at the origin. Near to the
centre of the QPC,

Ad ≈ 8As

(wxwywz)
. (6)

The impurity spin is localized over a volume, typically,
wxwywz ∼ 1 μm × 5 nm × 20 nm, that greatly exceeds the
volume per nucleus ∼1 nm3. At temperatures much lower than
the Fermi temperature, we may assume the impurity electron
remains in the lowest energy state of the potential confining
it. In the absence of the coupling of the impurity spin to the
conduction electrons, the impurity susceptibility would have
obeyed the Curie law. At temperatures small compared to the
Fermi temperature, this susceptibility would be larger than the
corresponding Pauli susceptibility of the conduction electrons.

We ignore the direct magnetic dipolar interaction of
the nuclear spins. In the volume V0 = wxwywz where
the impurity electron is localized, we will show that the
contribution to nuclear relaxation from the coupling of the
nuclear spin with the conduction electrons would be small
compared to the contribution from the nuclear coupling with
the localized electron. The reason is that the localized electron
corresponds to an enhanced spin density compared to the
conduction electrons. We can also ignore the indirect exchange
(RKKY) interaction of different nuclei as its strength would
be small, of the order of A2

s . However it is important to
retain the RKKY interaction of the localized electron with
distant nuclei, especially those lying outside V0. The strength
of this interaction is proportional to J As � A2

s (electronic
energy scales such as J are expected to be typically larger than
corresponding nuclear energy scales such as As). The RKKY
hyperfine interaction will be of the form

HRKKY(Ri) = ARKKY(Ri )Ii · S, (7)

where, for kF Ri � 1 and one spatial dimension, the RKKY
interaction is [33]

ARKKY(Ri) ≈ − J Asρ(εF)

V0

[π

2
− Si(2kF Ri )

]
, (8)

where ρ(εF) = 4m/(2π h̄2kFwywz) is the density of electron
states in the QPC and Si(x) is the sine integral function. At

large values of its argument, Si(x) ≈ π/2 − cos(x)/x −
sin(x)/x2, while for small values of x , Si(x) ≈ x . The
hyperfine interaction Ad for the nuclei near the centre of the
QPC (given by (6)) as well as ARKKY(Ri ) for those further
away can be conveniently expressed by introducing a spatially
varying hyperfine coupling Ad(Ri):

HI,S =
∑

i

Ad(Ri )Ii · S. (9)

The coupling of a nuclear spin with its external
environment can be written as

Hn(Ri) = −gnμn(H0 + Hloc(Ri )) · Ii , (10)

where

Hloc(Ri) = − 1

gnμn
(Asσ (Ri ) + Ad(Ri)S) (11)

is the local field due to electrons at the site Ri . The
second contribution in (11) is more important when the
impurity to host nucleus distance is not very large because
the susceptibility of the localized spin, ∼μ2

B/kBT is a factor
εF/kBT larger than the Pauli susceptibility per conduction
electron.

The local field is the sum of an ‘average’ part 〈Hloc〉 and
a fluctuation part δHloc. The nuclear resonance occurs at a
frequency ωn given by

h̄ωn(Ri) = gnμn H0(1 + K (Ri)),

where
K (Ri) = 〈H z

loc(Ri )〉/H0 (12)

is the Knight shift. The Knight shift in general depends on the
location Ri .

The longitudinal and transverse nuclear relaxation
rates (due to local field fluctuations) T −1

‖ and T −1
⊥ are

respectively [34]

T −1
‖ (Ri ) = (gnμn)

2

2h̄2

∫ ∞

−∞
dt 〈δH z

loc(Ri , t)δH z
loc(Ri , 0)〉,

T −1
⊥ (Ri ) = (gnμn)

2

4h̄2

∫ ∞

−∞
dt eiωn t〈δH +

loc(Ri , t)δH −
loc(Ri , 0)〉.

(13)
These are related to the experimentally measured longitudinal
relaxation rate T −1

1 and transverse relaxation rate T −1
2

through [34]
T −1

1 = 2T −1
⊥ ,

T −1
2 = T −1

‖ + T −1
⊥ .

(14)

Thus the Knight shifts as well as the nuclear relaxation rates
depend on the locations of the nuclei.

It is possible to express the correlators of the fluctuating
magnetic fields in (13) in terms of the dynamic susceptibility
χαβ(Ri , ω) using the fluctuation-dissipation theorem. Here α

and β are the longitudinal (z) and transverse (+,−) labels.
The fluctuation-dissipation theorem gives

Im χαβ(Ri , ω) = 1

h̄
tanh

(
h̄ω

2kBT

)
Cαβ(Ri , ω), (15)

4
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where

Cαβ(Ri , ω) =
∫ ∞

−∞
dt eiωt 〈δMα(Ri , t)δMβ (Ri , 0)〉 (16)

is the correlator of the fluctuations of the magnetic moment M.
At low frequencies ω 
 kBT/h̄, (15) simplifies to

Im
χαβ(Ri , ω)

ω
≈

(
ω

2kBT

)
Cαβ(Ri , ω).

We now study two extreme cases. The first concerns
nuclei not very far from the impurity so that the relaxation
of the nuclei is dominated by their coupling to the impurity.
The second case concerns distant nuclei where the RKKY
interaction is small and the nuclear relaxation is dominated
by their coupling to the conduction electrons. We will
study the nuclear relaxation both above and below the Kondo
temperature of the impurity electron.

3. Temperatures above TK

3.1. Relaxation due to impurity coupling

The local field at a nucleus at Ri has a simple relation with the
magnetic moment M of the impurity electron:

Hloc(Ri) ≈ − Ad(Ri )

gnμn
S = − Ad(Ri)

gngsμnμs
M. (17)

Using this relation between M and Hloc together with (13)
and (15), the nuclear relaxation rates at low frequencies can
be shown to be

T −1
‖ (Ri) = kBT

(
Ad(Ri)

h̄gsμB

)2

Im
χ zz

imp(ω)

ω

∣∣∣∣
ω→0

, (18)

and

T −1
⊥ (Ri ) = 1

4h̄

(
Ad(Ri)

gsμB

)2

coth

(
h̄ωn

2kBT

)
Im χ+−

imp (ωn).

(19)
In our case, kBT is much larger than the nuclear Zeeman
energy h̄ωn , so T −1

⊥ is approximately

T −1
⊥ (Ri ) = kBT

2

(
Ad(Ri)

h̄gsμB

)2

Im
χ+−

imp (ω)

ω

∣∣∣∣
ω→0

. (20)

χimp is the susceptibility of the impurity electron. We need
to obtain expressions for the imaginary part of the impurity
susceptibility.

Let T −1
e1 and T −1

e2 be the longitudinal and transverse
relaxation times for the impurity, and let χ L

imp and χT
imp be

respectively the longitudinal and transverse static impurity
susceptibilities:

χ L
imp = gsμB∂〈Sz〉/∂ H0,

χT
imp = gsμB〈Sz〉/H0.

(21)

At small magnetic fields, there is no difference between the
static longitudinal and transverse impurity susceptibility. Ex-
pressions for the imaginary part of the impurity susceptibility
are available in the literature [35]:

Im
χ zz

imp(ω)

ω
= χ L

imp

Te1

1 + (ωTe1)2
,

Im
χ+−

imp (ω)

2ω
= χT

imp

Te2

1 + [(ω − ωe)Te2]2
.

(22)

Te1 and Te2 also depend on the frequency but we are interested
only in the zero frequency limits. From [34],

T −1
e1 = T −1

e2 = πkBT

h̄
(Jρ(εF))

2, ωeTe2 
 1, (23)

T −1
e1 = 2T −1

e2 = π S(Jρ(εF))
2ωe, ωeTe2 � 1. (24)

The corresponding expressions for the imaginary part of the
impurity susceptibility may obtained from (22) by substituting
the values of the static transverse and longitudinal impurity
susceptibility defined in (21) [34]. For ωeTe2 
 1 we have

Im
χ zz

imp(ω)

ω

∣∣∣∣
ω→0

= Im
χ+−

imp (ω)

2ω

∣∣∣∣
ω→0

= 2h̄S(S + 1)(gsμB)2

3π(kBT )2(Jρ(εF))2
, ωeTe2 
 1; (25)

thus the nuclear relaxation rates are

T −1
‖ (Ri ) = T −1

⊥ (Ri) = Ad(Ri )
2S(S + 1)

3π h̄(kBT )(Jρ(εF))2
,

ωeTe2 
 1. (26)

For ωeTe2 � 1, which is the case at low temperatures
and/or high fields, the fluctuations are very anisotropic.
The imaginary part of the impurity susceptibility and the
corresponding nuclear relaxation rates are

Im
χ+−

imp (ω)

2ω

∣∣∣∣
ω→0

= π S2(gsμB)2(Jρ(εF))
2

2ω2
e

,

T −1
⊥ (Ri ) = π(kBT )Ad(Ri)

2S2(Jρ(εF))
2

2h̄3ω2
e

,

(27)

and

Im
χ zz

imp(ω)

ω

∣∣∣∣
ω→0

= (gsμB)2e−h̄ωe/kB T

πωe S(kBT )(Jρ(εF))2
,

T −1
‖ (Ri ) = Ad(Ri)

2e−h̄ωe/kB T

π h̄2ωe(Jρ(εF))2
≈ 0, ωeTe2 � 1.

(28)

The experimentally observed relaxation rates T −1
1 and T −1

2 are
obtained by using the relations in (14).

3.2. Relaxation due to conduction electron coupling

Expressions for nuclear relaxation due to coupling to
conduction electrons can be obtained by substituting J , ωe and
Te in (23) by As , ωn and Tn. Since the nuclear Zeeman energy

5
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is so small, we will always be interested in the high temperature
case. The result is [36]

T −1
1 = T −1

2 = π(kBT )

h̄
(Asρ(εF))

2. (29)

Note that the nuclear relaxation due to coupling to the impurity
spin does not have a Korringa-like temperature dependence.
This may be regarded as a signature of the presence of a
localized electron.

4. Temperatures below TK

Let us now consider nuclear relaxation below the Kondo
temperature TK. The more interesting case, again, is that of
relaxation by coupling to the impurity spin.

4.1. Relaxation due to impurity spin

The following analysis presumes that gsμB H0/kBTK 
 1. For
higher fields, the analysis of section 3 should be used. At small
fields, we have mentioned earlier that there is no difference
between the static longitudinal and transverse susceptibilities.
When T 
 TK, the imaginary part of the susceptibility satisfies
an elegant relation [37],

Im
χ zz

imp(ω)

ω

∣∣∣∣
ω→0

= Im
χ+−

imp (ω)

2ω

∣∣∣∣
ω→0

= 2π h̄χ2
imp

(gsμB)2
. (30)

As a result, the nuclear relaxation rates take the simple form

T −1
‖ = T −1

⊥ = 2π(kBT )Ad(Ri)
2

h̄(gsμB)4
χ2

imp. (31)

Using (17) in the definition of the Knight shift, (12), it is
easy to see that

K (Ri) = Ad(Ri ) Re χ zz
imp(0)

(gnμn)(gsμB)
. (32)

Re χ zz(0) is just the static impurity susceptibility χimp.
Equation (32) is also valid above the Kondo temperature.
Different nuclei will couple with the impurity with different
strengths Ad(Ri ); however, the temperature dependence of
the Knight shift will be the same. Since Ad(Ri) falls off
with distance, one would observe a spread of Knight shifts
and the spread would continuously increase in the same
sense as the impurity susceptibility as the temperature is
lowered. Ultimately, the susceptibility will saturate at the
lowest temperatures which would correspond to a maximum
spread of the Knight shifts. The same can be said for the
relaxation rates (see (31)). Such behaviour of the Knight shift
has been reported in Cu:Fe alloys [38].

Combining (31) and (32) we get [34, 37]

K (Ri)
2T1(Ri )T = (gsμB)2

(gnμn)2

h̄

4πkB
. (33)

Equation (33) has the form of Korringa relaxation [36].

4.2. Relaxation due to conduction electron coupling

Relaxation due to coupling to conduction electrons matters
only for those nuclei that are so far from the impurity that their
RKKY coupling to the impurity is weaker than their hyperfine
coupling with the conduction electrons. That happens when
kF Ri � 1. As the temperature falls below the impurity Kondo
temperature, there is an enhancement in the density of states at
the Fermi energy: [39]

ρ̃(εF) = ρ(εF)[1 + C(TF/TK)1/N], T 
 TK (34)

where the tilde denotes the Kondo-enhanced density of states
at the Fermi energy, C is a constant of order one, and N is the
number of electrons in the QPC. This leads to an enhancement
of the relaxation rate [40] given in (29):

T −1
1 = π(kBT )

h̄
(As ρ̃(εF))

2, T 
 TK. (35)

Thus we can summarize,

T −1
1 |T 
TK

T −1
1 |T �TK

= ρ̃(εF)
2

ρ(εF)2
≈ 1 + 2C(TF/TK )1/N. (36)

We should perhaps use this enhanced density of states even for
the case of relaxation through coupling to the impurity spin
below the Kondo temperature.

Application of a magnetic field will tend to decrease the
density of states towards the high temperature value. In the
Kondo regime, the impurity susceptibility is proportional to
the density of states of the conduction electrons. From the
known Bethe ansatz solution for the impurity magnetization,
we can extract the magnetic field dependence of the density of
states: [41]

ρ̃(εF, H0) ≈ ρ(εF)

[
1 + CTF

NTK

(
1 − C ′

(
gsμB H0

kBTK

)2
)]

,

(37)
where C ′ is a constant of order one.

5. Crossover between high and low temperature
regimes

We have two independent parameters demarcating low and
high temperature behaviour: ωeTe2 and T/TK. So we need
to discuss further the meaning of low and high temperature
regimes.

The Kondo temperature is approximately TK ≈
εFe−1/Jρ(εF), where Jρ(εF) is the unrenormalized, i.e., bare,
Kondo coupling. Given that εF ≈ 20 K, we cannot have too
small a value for Jρ(εF) if we are to have any hope of probing
the behaviour on either side of the Kondo temperature. Even
for Jρ(εF) = 0.1, we would get a very small TK ≈ 10−3 K.
Let us therefore assume that the bare Jρ(εF) � 1.

In our discussion of the behaviour above TK, we had
obtained two regimes depending on the magnitude of ωeTe2.
A small value of ωeTe2 corresponded to a high temperature.
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From (23), we can see that the criterion for high temperature
behaviour (26) is

T � Thigh = h̄ωe

πkB(Jρ(εF))2
. (38)

This is not too different from the temperature corresponding
to the Zeeman splitting of the localized electron given our
expectations regarding the value of Jρ(εF). Now the Kondo
temperature can either be larger or smaller than Thigh.

Suppose TK 
 Thigh. Then in principle we have three
regimes: T � Thigh, TK 
 T 
 Thigh, and T 
 TK. In the
high temperature regime, T � Thigh, we will observe a non-
Korringa relaxation, (26), due to coupling with the impurity
spin.

Note that the condition TK 
 Thigh corresponds to TK 

gsμB H0/kB. However all our discussion of T 
 TK assumed
that the Zeeman splitting of the impurity was less than the
Kondo temperature. We should not use those results for T 

TK. In fact, the large Zeeman field suppresses the ‘Fermi
liquid’ regime of the Kondo model. Thus there is no Kondo
regime for TK 
 Thigh. There are just two regimes separated
by Thigh, and the relaxation rates in these two regimes are given
by (26)–(28). The maximum relaxation rate occurs around
Thigh where ωeTe2 ≈ 1.

Suppose TK � Thigh. If the impurity Zeeman splitting
is small, then this is the likely scenario. In that case we
should redefine our high temperature regime to mean T � TK.
Owing to the qualitative change in the susceptibility and other
properties at T < TK, we must not use (when T < TK) (26)–
(28) which were derived assuming a Curie susceptibility for the
impurity spin and the bare value of the dimensionless Kondo
coupling. Such assumptions are correct only when T � TK.
In the low temperature regime, T 
 TK, the relaxation will
be given by (31). In the region of T = TK, the ratio of the
relaxation rate on the high temperature side to the Kondo side
is of the order of 1/(Jρ(εF))

2. Since the coupling constant
Jρ(εF) diverges below T = TK, the Kondo relaxation rate
will dominate near T = TK and below. As the temperature is
decreased starting from the high temperature side, one would
observe a steady enhancement of the relaxation rate (obeying
the 1/T law) up to T ∼ TK, followed by a linear-T decrease
according to (31). (Maximum relaxation rate at T ≈ TK.)

Further confirmation of the Kondo effect can be made by
measuring the temperature dependence of the Knight shift as
shown in (32). If the temperature dependence of the Knight
shift is the same as that of the Kondo impurity susceptibility
both above and below the Kondo temperature, then the Kondo
effect will be confirmed.

6. Relaxation by impurity coupling and conduction
electron coupling

Let us compare the relative magnitudes of relaxation by
coupling to the impurity spin and to conduction electrons.
Consider the low temperature regime, T 
 TK, and a small
magnetic field such that TK � gsμB H0/kB. Thus we need to
compare the relaxation rates in (31) and (35). First consider
nuclei inside the region V0 about the impurity. In this region,

we have mentioned earlier that Ad(Ri) ≈ 8As/(wxwywz).
It is easy to see that the ratio of the relaxation rates through
coupling with the impurity and with the conduction electrons
is of the order of (Ad(Ri)χimp/(gsμB)2)2/(Asρ(εF))

2 ∼
(4π h̄2kF/mwxkBTK)2, where we used ρ(εF) = 4m/(2π h̄2kF

wywz). Estimating 2π/wx ∼ kF, the ratio works out to
∼(4εF/TK)2 � 1. Therefore in the region V0 around
the impurity electron, nuclear relaxation is primarily through
coupling with this electron. Outside V0, the impurity
RKKY coupling decreases as 1/(kF Ri ). The distance at
which relaxation by conduction electrons becomes comparable
depends on the strength of Jρ(εF). We have argued before
that we need Jρ(εF) � 1 in order to have any chance
of measuring on both sides of the Kondo temperature with
the usual apparatus. Thus the RKKY interaction is smaller
than As by a factor of 1/(kF Ri). Therefore the distance
beyond which relaxation is mostly by conduction electron
coupling corresponds to (4εF/kBTK)2/(kF Ri )

2 < 1, or Ri >

4εF/(kBTKkF).
The Kondo impurity, if present, will be easier to detect

through its direct or RKKY exchange coupling with the nuclear
spins for three reasons. First, we have already seen above
that the higher susceptibility of the impurity compared to
the conduction electron susceptibility for T 
 TF leads to
a stronger nuclear relaxation rate. Second, the temperature
dependence of the nuclear relaxation in the former case does
not follow the Korringa law at high temperatures. Third, the
Knight shift will broaden as the temperature is lowered, and
the temperature dependence of the broadening will be directly
proportional to the Kondo impurity susceptibility (which is
well-known). All cases we discussed obey the Korringa law
at temperatures below the Kondo temperature.

We have not discussed the role of possible electron–
electron interaction. Electron interaction will affect both
the density of states as well as the impurity susceptibility.
Proximity to a ferromagnetic instability of the conduction
electrons will enhance the impurity susceptibility (through
enhancement of the electron gyromagnetic ratio) which will
tend to increase the relaxation rate. However one needs to
keep in mind any interaction effects on the density of states.
In the absence of the Kondo impurity, Moriya has shown that
the nuclear relaxation rate is enhanced by electron–electron
repulsion [42].

7. Relaxation by nuclear spin diffusion

In our treatment we have so far ignored internuclear
dipolar interactions that will cause internuclear flip-flops and
nonconserving nuclear spin flips. In GaAs, the intrinsic nuclear
relaxation times T1 and T2 can roughly estimated to be of the
order of h̄/εdd ∼ 10−4 s, where εdd is the magnetic dipolar
interaction of neighbouring nuclei corresponding to a field of
about 1 mT acting on the nuclei. In non-zero fields, however,
T1 can be larger by several orders of magnitude as for example
has been observed [43] in GaAs where T1 ∼ 103 s at fields of
about 140 mT. In the following discussion we assume that a
field of several millitesla is present so that nonconserving spin
flips due to internuclear interaction may be ignored.

7
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In addition to nonconserving spin flips, one also has
internuclear spin flip-flop processes. The latter give rise to
nuclear spin diffusion (NSD) and occur even in the presence
of an external magnetic field. NSD effects in quantum dots
are a topic of much recent study owing to their importance for
nuclear spin polarization based qubits. A thorough analysis of
NSD is not attempted here given the incomplete understanding
in the literature of the same on quantum dots. Instead we
discuss qualitatively the conditions under which NSD effects
can be important in our case, and how this may be suppressed
to allow the electronic relaxation mechanisms to have a greater
effect on the QPC conductance. A simple model for studying
the spatial dependence and temporal decay of the nuclear
polarization is

∂M

∂ t
= D∇2 M − M − M0

T1(r)
, (39)

where D is the nuclear spin diffusion constant and M0 is the
steady state nuclear polarization in the given external magnetic
field. The nuclear spin diffusion constant is related to the
decoherence time T2 for the nuclear polarization; for a cubic
lattice such as GaAs [44, 45],

D ≈ a2

30T2
, (40)

where a is the nearest distance between nuclei of the same
species. In pure, bulk GaAs, the internuclear flip-flop processes
set an upper limit to T2 ∼ h̄/εdd ∼ 10−4 s, which gives
us Dbulk ∼ 10−13 cm2 s−1. Experimentally observed values
of the nuclear spin diffusion constant in bulk GaAs due to
internuclear dipolar interactions are in agreement with this
rough estimate [46].

In a quantum dot with a localized impurity electron, the
spatial variation of the localized electron wavefunction leads to
a spatially varying hyperfine contact interaction. This affects
both the relaxation and spatial distribution of the nuclear
polarization. First, the spatial variation of the hyperfine
interaction in the quantum dot has been shown [47] to cause a
suppression of the diffusion constant Ddot in the dot by a factor
of the order of 10 compared to Dbulk because nuclear flip-flop
transitions in this case do not conserve energy. Experimentally,
the NSD constant in quantum dots has also been reported to be
small compared to the bulk value [48, 49]. Second, during
the build-up of the nuclear polarization, the inhomogeneity
of the hyperfine interaction translates into an inhomogeneous
nuclear polarization, with a maximum near the centre of the
dot, and rapid decay outside the dot. Due to the presence of the
diffusion term, the solution of equation (39) with a nonuniform
initial distribution of nuclear polarization does not in general
decay exponentially with time [50]. Exponential decay can
however take place if the diffusion energy in equation (39)
is smaller than h̄/T1. We estimate the nuclear diffusion rate
1/T sd

1 to be the order of Ddot/ l2
min, where lmin is the smallest

dimension of the QPC along which nuclear spins may diffuse.
In our case, lmin = wy = 5 nm, and conservatively using for
Ddot the bulk diffusion value Dbulk for GaAs, we find T sd

1 ≈
0.4 s. If we take into account the suppression of the diffusion

constant in the quantum dot because of an inhomogeneous
hyperfine interaction [47], we will have T sd

1 ∼ 4 s for Ddot ∼
0.1Dbulk. In recent measurements on quantum dots [51],
enhancement of the nuclear relaxation time by a factor of
nearly two orders of magnitude (to nearly 100 s) has been
reported at fields more than 1 mT. Another way to increase the
NSD time is by designing the 2DEG such that we have AlGaAs
layers on either side of the 2DEG, instead of on one side as
we have considered here. NSD is suppressed in a direction
perpendicular to the 2DEG because of the change of material
from GaAs to AlGaAs as well as disorder in AlGaAs [52]. In
such a redesigned QPC, we should regard the transverse width
wz = 20 nm as lmin, and that will give T sd

1 ∼ 6.4 s even if
inhomogeneous hyperfine interaction effects are not taken into
account, and T sd

1 ∼ 65 s if this is taken into account. We
note that in experiments on quantum dots in [53], T sd

1 has been
estimated to be as long as 200 s.

To compare with the nuclear relaxation rates in the Kondo
scenario which is the subject of this paper, we have for the
QPC Ad ≈ 5.8 × 10−29 J per nucleus and we associate the
experimental energy scale determining the conductance with
the Kondo temperature: TK ≈ 1 K. For a QPC defined in
a GaAs 2DEG with conduction electron density 1011 cm−2,
the 1D Fermi energy εF (m = 0.067me) in the lowest sub-
band is about 20 K; and using TK ≈ εFe−1/Jρ(εF), we estimate
the bare (high temperature) value of Jρ(εF) ≈ 0.35. In
the ‘high’ temperature region (T > TK), say T = 2 K,
equation (26) then gives the relaxation time due to coupling to
the impurity electron as T imp

1 ≈ 0.1 s. This is comparable with
our most conservative estimate above for the relaxation time
due to nuclear spin diffusion, while if we take into account
the suppression of NSD due to inhomogeneous hyperfine
interaction, and/or design the 2DEG to suppress diffusion
perpendicular to the 2DEG, NSD effects are much smaller
and may be ignored in a first treatment. The relaxation time
using the above parameters due to coupling to conduction
electrons as estimated from equation (29) is T cond−el

1 ≈ 5 s,
which is also long compared to relaxation by coupling to
the paramagnetic impurity. In the ‘low’ temperature region
(T < TK), the relaxation time associated with coupling to
the paramagnetic impurity as given by equation (31) (using
χimp ≈ (gsμB)2/kBTK) is T imp

1 ≈ 3.5 × 10−2 s at T = 0.5 K,
which is much shorter than the relaxation times T sd

1 ∼ 10 s
and T cond−el

1 (at this temperature T cond−el
1 ≈ 20 s) respectively

due to NSD and coupling to conduction electrons. The latter
two effects are therefore safely ignored in the QPC, except
at very low temperatures when NSD may dominate because
it does not vanish at T = 0. Away from the centre of the
QPC, relaxation by coupling to the paramagnetic impurities
and coupling to conduction electrons become comparable. We
estimate this distance from the discussion in section 6 to be
Ri = (4εF/kBTKkF) ≈ 1.6 μm, which is of the order of
the length of the QPC. Thus outside the QPC, relaxation by
coupling to conduction electrons is also important. It is easily
seen that the same is also true for NSD. Nevertheless, since
the conductance is very sensitive to the Overhauser field in the
QPC and not to the Overhauser field in the 2DEG, we conclude
that to a first approximation, T1 obtained from the conductance
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of the QPC is dominated by the coupling to the paramagnetic
impurity compared to nuclear spin diffusion and coupling to
conduction electrons.

To summarize, nuclear spin diffusion effects may be
ignored in our analysis if the experiments are performed in
fields of several millitesla, and the temperature is high enough
such that the nuclear diffusion time l2

min/D is much longer
than the relaxation time T1 from electronic processes. A
more accurate treatment of NSD effects is needed at very low
temperatures and for long QPCs.
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